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This paper describes an investigation of mechanical properties of freely suspended liquid filaments. These
unique fluid microstructures may be formed by layered liquid crystalline mesophases. The filaments are
electrically deflected and stimulated to mechanical oscillations. Resonance frequencies and damping rates are
recorded. We present a model for a basic description of the dynamics, which is used to evaluate and to discuss
the forces involved. The dependence of the oscillation parameters upon geometrical parameters and tempera-
ture is analyzed.
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Thin liquid fibers are among the most fascinating struc-
tures in complex fluids. In some non-Newtonian liquids, fi-
bers can form in rheological processes when such material is
pulled from a reservoir; for example, in polymer nematics
and columnar phases �1,2�. Nematic ordering also plays a
role in biological filaments, e.g., �3�. In this paper, we inves-
tigate filaments that are not stabilized by dynamic effects but
primarily by their internal molecular layer structure. It is
well known that smectic liquid crystals, similar to soap so-
lutions, can form thin stable free standing films. Few phases
of bent-core mesogens, however, are known to form freely
suspended filaments, for example when the material is pulled
with a needle from the bulk. Only a few investigations have
been devoted so far to the understanding of structural and
mechanical properties of such filaments �4–7�, and little is
known about dynamical properties of such structures. The
filaments are excellent models study fluid dynamics in
microsystems.

The filamental structures represent either single cylindri-
cal fibrils or bundles of fibrils, with diameters from fractions
of micrometers to approximately 100 �m, and slenderness
ratios �length to diameter� exceeding 1000. Filaments are
pulled with a needle at moderate speed ��1 mm/s� from
bulk material. They retain uniform diameters during the pull-
ing process; new material is constantly supplied from the
meniscus. When the needle is pushed slowly back towards
the support, the filaments remain straight and excess material
flows back into the bulk. Only after a sudden fast retrace of
the needle do the filaments deflect for a moment before they
straighten again, on a millisecond time scale.

The aim of this paper is the understanding of the dynami-
cal properties of such liquid ”chords.” For that purpose, we
deflect filaments of 10 to 60 �m diam and 1.5 mm length
laterally by means of electric fields �Fig. 1, top�. After the
field is switched off, the relaxation dynamics of the filaments
is investigated. We observe damped oscillations of a spatially
sinusoidal ground mode and analyze the dependence
of oscillation parameters upon filament dimensions and
temperature.

The material studied �Fig. 1, bottom� has a mesomor-
phism isotropic 160 °C SmX 143 °C SmCPA 90 °C solid.
The so far not fully classified SmX phase has a layer struc-
ture and many features in common with a B7 phase �8�.

X-ray data indicate that the filaments consist of cylindrically
wrapped molecular layers �4�, in accordance with proposed
B7 filament structures �5,6�. However, reflexes related to any
in-plane molecular lattice are absent in SmX.

The experimental setup is sketched in Fig. 1. The filament
is drawn vertically between two holders �positions x= ±L /2�.
Their distance can be controlled by a stepper motor. We as-
sume that the filaments have a roughly cylindrical shape with
radius r. The setup is enclosed in a custom-made heating
box, described elsewhere �9,10�. With a homogeneous dc
electric field perpendicular to the filament axis, the chord is
”plucked”: a well-defined bend deformation is induced �Fig.
1, top right�, consisting essentially of the ground mode z�x�
=z0 cos�kx� with k=� /L. The deflection amplitude z0 de-

FIG. 1. Top: Experimental setup for the preparation of liquid
filaments and excitation of oscillations. The observation direction is
y, the direction of the electric field and of the oscillations is z, and
x is the vertical axis of the straight filament. The gap between the
electrodes is 6 mm. On the right, images of a straight �0 MV/m�
and a deflected filament �0.5 MV/m� are shown; the filament length
is 5.0 mm. Bottom: The chemical structure of the mesogen.
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pends on filament length and diameter and on the electric
field strength. The latter is chosen between �0.1 and
0.5 MV/m, so that z0 is a few percent of the filament length.

We record the filament dynamics at frame rates up to 5/ms
with a high speed camera �Citius Imaging C10�, mounted on
a QM 100 long-range microscope. The deflection z is mea-
sured with a resolution of �1 �m at the antinode of the
oscillations, x=0.

Typical experimental data are presented in Fig. 2. After
the dc electric field E is switched on, the filament bends
within microseconds towards one �spontaneously chosen�
electrode. This deflection is induced primarily by the dielec-
tric torques that tend to rotate a long cylinder �dielectric con-
stant �10� with its axis towards the electric field axis. The
deflection stops after reaching a few micrometers when a
balance of electric forces and filament tension is reached, and
a weak, damped oscillation follows �Fig. 2, left inset�. Then,
the deflected filament gradually charges in the field �flow of
ionic charges of impurities�, since the deflected filament is
not on an equipotential line of the electric field. The charged
filament is attracted by the oppositely charged electrode, and
the deflection increases until Coulomb forces acting on the
filament are balanced by its tension. The charging process
stops when the electric field of the accumulated charges
compensates the external field in the filament. Then, the fila-
ment is again along an equipotential line of the total field.
This saturation is reached after few seconds. The sign of the
charge depends upon the initial spontaneous deflection, and
thus the direction of bend is independent of the dc field po-
larity. These electric effects are essentially different from
those reported for axial fields �5�. Owing to the cylindrical
symmetry, there is no polar electric response. When the elec-
tric field is switched off, the filament returns with a damped
oscillation to its straight ground state �right inset of Fig. 2�.
The frequency of this free oscillation was systematically

larger, by a few percent, than that of the initial vibration �left
inset of Fig. 2�. Since the latter may involve electric interac-
tions additional to mechanical forces, we concentrate here
only on the oscillations in the field off state.

The oscillation amplitudes are fitted with a function

z�x = 0� = z0 exp�− t/��cos��t − 	0� �1�

�see right inset of Fig. 2�, the fit parameters � and � depend
on temperature and filament dimensions, but not on the elec-
tric field strength used in the preparation nor on the initial
deflection amplitude.

Figure 3 shows one important experimental result, � de-
pends inversely on the filament length L, i.e., the phase
velocity c=� /k of the transversal waves of the filament is
constant. This representative graph shows data collected
from a single filament with a uniform radius, which has been
drawn in five steps from 1.4 to 4.9 mm length. This length
change tunes the resonance of the chord approximately from
f =900 to 265 Hz. The relaxation time � depends linearly
upon L, but 1 /� is more than one order of magnitude smaller
than �.

Data for the radius dependence of c and � �Fig. 4� scatter
somewhat more than the length characteristics, because each
datum point is obtained from a different filament �altogether
differing in length by �3%�. The data do not show any sys-
tematic variation of � with r. The damping time decreases
slightly but systematically with a smaller filament radius. For
a filament with a diameter of 22 �m and a length of 2.5 mm,
we have measured the temperature dependence of both dy-
namic parameters �Fig. 5�. The damping time � is tempera-
ture independent between 115 °C and 150 °C. In SmCP,
��T� can be described by an Arrhenius curve with activation
energy EA=6.05 kJ/mol. In SmX, the activation energy may
be slightly higher, but the range is too narrow to obtain a
reliable quantitative EA there.

These experimental results can be summarized as follows:
The angular frequency � is proportional to the wave number
� /L of the ground mode; any dispersion is below our detec-
tion level. At constant L, � changes by about 15% in the
accessible temperature range; oscillations are faster at lower

FIG. 2. �Color online� Deflection of a filament �L=2.96 mm, r
=25 �m� at 150 °C after switching an electric field of E
=0.33 MV/m on after 0.297 s and off after 3.20 s. The left inset
expands the oscillations immediately after switching on; the solid
line guides the eye. The right inset shows the free oscillation after
switching off, the solid curve is a fit to a damped sine curve, Eq.
�1�, with parameters given in the plot.

FIG. 3. Dependence of the oscillation frequency � and the
damping coefficient �−1 on the inverse filament length 1/L at con-
stant filament radius of r=25 �m, T=150 °C.
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temperatures. There is no systematic ��r� dependence. Note
that a solid string with tension T and specific mass � has a
ground mode frequency proportional to �T /�. If, naively, we
equate the filament tension to the product of cylinder circum-
ference and surface tension, 2�r
, this would lead to an r−1/2

dependence of �, in contrast to the experiment. The damping
time � is inversely proportional to the filament length. Its
temperature dependence is negligible. There is a weak radius
dependence of � �Fig. 4�.

For a description of the dynamics, we employ a simple
harmonic oscillator model. An equation of motion of the liq-
uid filaments can be constructed from inertial, elastic, surface
tension, and friction terms that influence the dynamics of
vibrations in absence of external forces. As a prerequisite, we
recollect possible contributions, including typical solid state
elastic properties that might arise from the internal layer
structure. From the surface energy per length dx of a cylinder
with radius r and surface tension 
, dEs=2�r
d�, one ob-
tains a force per unit length in z direction fs=2�r
z�, primes
denote derivatives respective to x. The kinetic energy per
length dx of a filament with mass density �, dEi

= 1
2�r2�ż2dx, yields an inertial force per length f i=�r2�z̈.

Orientational elasticity arises from induced deformations
of the director field. The magnitude of the related elastic
energy per length is of the order of dEor�

1
2�r2K�z��2dx,

where a single effective elastic constant K is assumed for
simplicity. Reasonable values of K are in the range of pico
Newtons, and thus the related force term for�−�r2Kz�iv� can
be neglected in comparison to the other forces. Form elastic-
ity may contribute a term dEe= 1

2E�z��2dI, with the geometri-
cal moment of inertia per length of the cylinder dI and an
elastic modulus E. One arrives at fe=−�� /4�r4Ez�iv�.

Further, we consider viscous friction of the oscillating
filament in air: The filament segment at the antinode of the
deflection moves with a maximum velocity v0=max�ż�. Ex-
perimentally, v0 is of the order of 0.3 m/s or less. Using the
kinematic viscosity of air at 100 °C, �air�2.310−5 m2/s,
Reynolds number Re, and drag coefficient cD for a filament
with r=25 �m are Re=2vr /�air�0.64, cD=8� / �Re�2.002
−ln Re���16, respectively. The friction force per length is
f f=−cD�A /d���airv2 /2 , �f f��16�air�airv=16�airv.

From the measured parameters, one can estimate ampli-

tudes of these forces: f̄s�400 �N/m, f̄ i�1750 �N/m, f̄ f

�100 �N/m, f̄e�30 E /MPa �N/m. This estimation shows
that friction in air should be very small, and form elasticity
may become important only if the unknown elastic modulus
E is of the order of 10 MPa or higher. In addition to the
terms defined above, we allow for some other possible terms
in the dynamic equations: a hypothetical bulk force, f�

=��r2z�, and a bulk friction force connected with shear in
the filament, f�=�r2��ż�, with the kinematic viscosity �.
Further, we may have to consider local energy dissipation at
the supports, which is independent of the filament length but
may depend upon the radius r.

We write the equation of motion in the form

z̈ + 2�ż − �ż� − C2z� + W2z�iv� = 0, �2�

related to the above defined parameters by

C2 =
2


r�
+

�

�
, W2 =

�

4
r4E + �r2K , �3�

and �=8�air / ��r2��. The ansatz z±=z0exp�±ikx+
t� leads to

2+2�
+�k2
+C2k2+W2k4=0 and one finds 
=−1/�± i�
with

1

�
=

8�air

�r2�
+

�k2

2
, � =�C2k2 + W2k2 −

1

�2 . �4�

Boundary condition are z�±L /2�, and we take into account
that in practice only the ground mode k=� /L is excited �Fig.
1, right�. Two counterpropagating waves form the solution
z�x , t�=z0 cos kx cos�t exp�−t /��.

We can compare Eq. �4� with the experimental results
obtained under isothermal conditions: ��k and 1/��k �Fig.
3�. One finds that the W term �contributions with z�iv�� is
negligible. Both elastic terms, for and fe, are too small to
influence the filament dynamics; otherwise, the experimental
dispersion relation ��k� would be nonlinear. Thus our inter-
pretation essentially differs from that in �5�. The experimen-
tal 1 /� is one order of magnitude smaller than �. Hence

FIG. 4. Dependence of the phase velocity c�r�=���r� /L and
the damping constant ��r� on the filament radius r. The filament
lengths are 2.4 mm±3%, T=150 °C.

FIG. 5. Dependence of the parameters � and 1/� on temperature
�filament diameter 22 �m, length 2.5 mm�. The solid line is an
Arrhenius fit in SmCP.
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we can approximate the ��k� dependence in Eq. �4� by �
=Ck= �2
 / �r��+� /��0.5k. Since the surface tension 

�25 mN/m has been measured in an independent experi-
ment �4�, and a density �=103 kg/m3 may be assumed in
good approximation, the pure surface tension related term
�2
 /�r can be calculated. For a filament with 25 �m radius,
it yields 1.4 m/s, which is much too small to explain the
experimental value 2.59 m/s from Fig. 3. Moreover, Fig. 4
shows that � has no systematic radius dependence. A domi-
nant surface tension term would lead to ���r.

The experimental filament length dependence of the
damping rate yields 1 /�=0.42 m/s L−1, i.e., � grows linearly
with L. For L=1.5 mm, the measured damping rate is
360 ms−1. Damping by air, in contrast, should be indepen-
dent of L, and it contributes less than 25% to 1/� in Eq. �4�
�for r�25 �m�. A bulk shear friction term would yield an L2

dependence of �. In order to explain the linear filament
length dependence of �, one has to look for alternative dis-
sipative effects �see below�.

We have to conclude that the main contribution to the
back-driving force is some bulk term, f�, that depends on the
second spatial derivative of z�x� and is proportional to the
filament volume rather than to its surface. Surface tension
related terms in the cylinder model are too small and yield a
wrong ��r� dependence. � should be of the order of �5 kPa;
its origin has yet to be explored. A static tension measure-
ment reported in �4� seems to give in approximation the clas-
sical surface energy Es, but systematic measurements need to
be performed. Otherwise, the forces contributing to � may be
of dynamic origin, comparable with effects of a nonzero stor-

age modulus of viscoelastic liquids. Measurements of the
dynamic filament tension should clarify this point.

Before the electric field is switched off, z0 is given by the
equilibrium of electric �Coulomb� forces and the leading
time-independent term �C2z� in the equation of motion �2�.
Initial acceleration and deflection amplitude are connected
by z̈�0,0�=C2z��0,0�; this allows us to estimate the ampli-
tude of electric forces on the filament, fel=�z̈�0,0�=��2z0,
yielding �600 kN/m3 at E=0.33 MV/m �respective charge
density 1.8 C/m3�.

The damping time � is proportional to the filament length
L, and since at given deflection z0, the initial kinetic and
potential energy of the filament is proportional to L, the main
contribution to energy dissipation should be independent of
L. A reasonable explanation is that friction occurs only at the
filament ends, where material floats into and out of the me-
niscus. Another consequence of ��L is that inside the fila-
ment, there is practically no dissipation. Weakly damped
transversal waves of the filament are accompanied by
friction-free plug flow along the filament axis and viscous
friction at the filament menisci. Finally, we note that the
same experiment performed with filaments in the B7 me-
sophase �of another mesogen� yields a qualitatively different
picture: Instead of oscillations, a fast overdamped relaxation
is observed. This is obviously due to an in-plane positional
order of B7, leading to strong internal dissipation.
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